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Abstract. We have proposed new boundary conditions for use in Monte Carlo simulations 
and have applied them in this instance to the two-dimensional square Ising model. The 
variables defined on the first layer outside the boundary of the system are determined by 
the requirement that the nearest-neighbour pair correlation function, with the boundary 
spin as one of the pair, is equal to that calculated from the finite system. The single-site 
values of the variables outside the boundary are chosen with a probability consistent with 
the fluctuations in the pair correlation function for the finite system. 

1. Introduction 

The Monte Carlo method (MCM) is a powerful tool in the study of models of cooperative 
phenomena (Binder 1979). Essentially the MCM is a means of estimating a multi- 
dimensional integral, related to the thermodynamic quantities of interest, through the 
use of random numbers. The random numbers are used to generate a sample population 
(configurations) from which statistical estimates are obtained. An appraisal of the 
technique in general applications, i.e. in all areas, indicates that the MC estimate of an 
integral is a consistent estimate, i.e. it converges to the right answer as the sample size 
becomes very large (James 1980). When this method is used to study cooperative 
phenomena in equilibrium statistical mechanics, the accuracy is less. Thus a statement 
which until recent times (Heermann and Stauffer 1981) was not uncommon was ‘Monte 
Carlo results are only accurate to within 10% when compared with exact values in 
critical phenomena’. 

We briefly discuss some of the potential sources of difficulties. There are a number 
that can be identified immediately. (a) The problems of interest require taking the 
thermodynamic limit, i.e. N + m  where N is a length defining each dimension of the 
system. In practice, of course, one is constrained to study systems of finite size from 
which one must deduce the properties of an infinite system. (b) We are particularly 
interested in the critical properties of the system and near the critical temperature the 
relaxation time of the order parameter is finite but large-the phenomenon referred 
to as critical slowing down. This means that the closer one gets to the critical point, 
the greater the required CPU time to achieve the desired sampling of independent 
states. (c) Boundary conditions, therefore, play an important role in the MC simulation 
of finite systems. Instead of divergence of the thermodynamic properties, periodic 
boundary conditions lead to ‘rounding errors’ and the thermodynamic properties are 
usually analysed through finite size scaling. In some instances the results for systems 
of various sizes are obtained and plotted against an inverse power of N and the values 
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relevant for the infinite system are deduced from an extrapolation to the limit 1,” -+ 0. 
It should be pointed out that periodic boundary conditions enhance fluctuations-the 
growth of droplets at an edge continues at the opposite side-thus leading to an 
overestimate of response functions in the critical region. A major drawback with these 
conditions is that the correlation functions are only reliable to order N / 2  (half of the 
width of the system!). Another feature is that there is never a sharp transition; 
the order parameter remains non-zero for T > T,. Muller-Krumbhaar and Binder 
(1972) proposed an alternative set of boundary conditions-an external field acts on 
the boundary spins with the condition a m / a n  = 0 where n is a direction normal to the 
local boundary. This is a generalisation of the Bethe approximation and as such leads 
to a sharp transition, but a crossover to classical exponents is observed near the critical 
temperature. These boundary Conditions should be appropriate for studying first-order 
phase transitions where there is usually an absence of critical fluctuations. (d) Most 
MCM use pseudo-random numbers. It has been shown that these are not truly random 
but fall on hyperplanes (Marsaglia 1968). This is a feature of all random number 
generators and the spacing between the planes is related to the length in bits of the 
computer word. It is difficult (if not impossible) to estimate the errors associated 
through the use of numbers which are not truly random. 

Intuitively one might expect that the proper implementation of a MC study should 
yield results of the same order as the high temperature series expansion (HTSE), i.e. 
MCM results for a 40 X 40 lattice should be of the same order as, say, HTSE for graphs 
of up to order -20. That this appears not to be true arises from the fact that HTSE 
to order N / ?  give more accurate results than are obtained using MC techniques on 
N X N lattices. In 0 2 we present the new boundary conditions which are designed to 
mimic the infinite system, whilst in 0 3 a novel means of sampling in the critical region 
is introduced. 

2. New boundary conditions 

Can we calculate the properties of an infinitely large system arbitrarily accurately by 
observing the properties of a finite portion (sample) of this system for a sufficiently 
long time? The answer, at first sight, appears to be yes, because all of the sample’s 
configurations with the correct frequencies will appear over an infinitely long period 
of observation. The use of boundary conditions proposed here is, thus, to fool the 
system into ‘believing’ that it is part of an infinitely large system. The boundary 
conditions which are generally used are single-site boundary conditions, i.e. they assign 
values to the variables of the first layer outside, either by calculating single-site averages 
inside (mean field conditions) or by making using of single-site values, e.g. cyclic 
boundary conditions. Instead of using single-site conditions to define the state of the 
spins in the first layer outside the finite system, we have made use of a method which 
determines these states through the use of the pair-correlation function and the average 
magnetisation. The state of each spin on the first layer outside the boundary is 
dependent on a random number which is compared with x A A ( T )  (the probability that 
the spin at distance r is up, given that the spin at the origin is up) or xBB(  r ) ,  the converse. 

These probabilities are related to the correlation function (Harding and Bunyan 
1980). Consider the following projection operators at a given site: 

A =+( 1 i- S )  R = i ( - S )  s = * 1  (1) 
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where A is 1 for S up and 0 otherwise. The converse is true of R. The fractional 
compositions of up and down spins are 

x,=i(l+(S)) and xg = ;( 1 -(S)) ( 2 )  

where (S) is the magnetisation of the system. 
The probability that a spin at r is up, given that the one at the origin is up, is 

XAA ( r )  = xA(xA + xBr ( r ) )  (3) 

x g B ( r )  = ~ B ( x B  + x A r ( r ) )  (4) 

and similarly 

Thus the first layer of spins outside the system is assigned a state such that this 
layer has approximately the same magnetisation as the system, but in addition we have 
built in the nearest-neighbour correlations between these spins and their internal 
neighbours. Thus we may look upon these boundary conditions as an improved mean 
field. However, the states of these spins are not fixed but are allowed to  change with 
the same frequency as the spins of the interior of the system. These conditions are  
very close in spirit to  the extended mean-field approximation of Bolton and Johnson 
(1976) and the self-consistent fluctuating mean field of Jan (1977). In the latter case 
the magnetisation of the external layer of spins is selected and adjusted to  ensure that 
it has the identical distribution to the internal magnetisation of the sample, but at a 
given instant the internal magnetisation of the sample and the external layer magnetisa- 
tion are not necessarily the same. 

3. Sampling in the critical region 

Near T, the relaxation time of the order parameter is long and this has the effect that 
the MC program will sample only a small region of phase space in a given run. The 
averages calculated for the various thermodynamic properties obtained from such a 
set of configurations will not be statistically independent and, furthermore, will strongly 
depend on the initial configuration. In addition, there is need to simulate the effects 
of the external portion of the system. In the critical region there are fluctuations 
ranging from the microscopic level to  the macroscopic size of the system. We attempt 
to  take this behaviour into account through a temperature fluctuation in a portion of 
the sample; thus a region varying in size from a few spins to approximately the size 
of the largest cluster observed for that given temperature is selected at random and 
a droplet is created by flipping over these spins from their present state to  the opposite 
state. The system is allowed to  attain equilibrium and further 'typical' configurations 
are generated. The overall effect should result in the sampling of another region of 
phase space and thus for a given amount of computing time an independent set of 
configurations. Far from and below T, the droplets are small and thus only a small 
cluster of spins will be perturbed, but after a few MC steps, this droplet disappears and 
there is no discernible difference between these equilibrium configurations and those 
obtained in the traditional manner. The same applies for the system above T,. 
However, near to T, the droplets are large and thus the perturbing of a portion of 
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the system is equivalent to a new initial configuration but one where there a re  some 
initial long range correlations. 

4. Results 

The relevant thermodynamic averages and fluctuations 
K 

( A ) = K - '  1 A, 

a re  calculated in the usual manner, where K is the number of MC steps. In particular, 
the magnetisation is 

K 

M = K-' ( S ) ,  M (  T )  = (MI.  (8) 
1 = 1  

The variation of the nearest-neighbour, next-nearest-neighbour and third-nearest- 
neighbour correlation functions with temperature is shown in figure 1 for the 32 x 32 
lattice. There is a sharp fall in the values of these variables near the critical 
temperature of the finite system. Figure 2 shows the variation of the average energy 
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T 

Figure 1. The correlation functions against temperature: a ,  nearest-neighbour, b, next- 
nearest-neighbour, c, third-nearest-neighbour. The full lines are the exact results o f  McCoy 
and Wu (1973). 



Monte Carlo method and correlated boundary conditions 4329 

0 

J .y 

. 
I I . .  I 

/ 
t? 
i 

- 
0 6- 

M -  

O 4 -  

I I 

i c 
0 2  I 

per spin with temperature. There is a noticeable change in the gradient of this curve 
near T - T, (exact). We have also simulated the properties of an 8 X 8 system with 
correlated boundary conditions and notice that the greatest discrepancy with the larger 
system occurs in the critical region. 

The variation of the magnetisation with temperature (figure 3) shows remarkable 
agreement with the exact results for T S  2.25. Our results, however, indicate a critical 
temperature of 2.230 as compared with the exact value of 2.268. There are strong 
fluctuations in the magnetisation above T, and it is only for the values of T > 2.50 
that the absolute value of the magnetisation is aways less than 0.1. The specific heat 
and susceptibility (figures 4 and 5) also show the expected increases. The major source 
of error in the analysis of the critical exponents will be due to  the error in the critical 
temperature. 

5. Conclusion 

The MC technique is a powerful means of simulating systems which exhibit phase 
transitions and critical phenomena. The two-dimensional king model presents the 
greatest challenge for computer simulations, mainly due to the slow decay of the long 
range correlation functions and the existence of exact values for comparison. We have 
presented a new set of boundary conditions which are designed to  minimise the effects 
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Figure 5. The susceptibility x (0) as a function of 
temperature. The full line is a guide to the eye. 

T 

Figure 4. The specific heat C (0)  of the two- 
dimensional Ising model as a function of tem- 
perature. The full line is the exact result of Onsager 
(1944). X are the exact values for a 
32 X 32 lattice with periodic boundary conditions 
(Ferdinand and Fisher 1969). 

of the slow decay of the correlations near T, and have tested our method on the 2~ 

square Ising ferromagnet. The results are consistent, e.g. the magnetisation, specific 
heat and susceptibility all indicate the same critical temperature. 

There remains, however, an outstanding problem with these (and most) boundary 
conditions-adequate sampling in the critical region. The relaxation time of the order 
parameter near T, is very long and an additional element is needed to ensure that 
there is appropriate sampling of phase space in the critical region. This is not crucial 
with the use of periodic boundary conditions in small systems as these conditions 
encourage the artificial growth of droplets. We have made an initial effort to address 
this problem but a more systematic approach is required. 

Finally, it should be noted that we have used a site-selection procedure intended 
to circumvent the possibility of getting locked into a region of phase space because of 
the order in which the sites have been visited. In our simulation sites were selected 
at random to be visited once and only once in each MC step, and the order in which 
they were visited varied with each step. 
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